Quasi-Double Diagonally Dominant H-Tensors and the Estimation Inequalities for the Spectral Radius of Nonnegative Tensors

نویسندگان

چکیده

In this paper, we study two classes of quasi-double diagonally dominant tensors and prove they are H-tensors. Numerical examples show that H-tensors mutually exclusive. Thus, extend the decision conditions Based on these tensors, estimation inequalities for upper lower bounds spectral radius nonnegative obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

A new bound for the spectral radius of nonnegative tensors

By estimating the ratio of the smallest component and the largest component of a Perron vector, we provide a new bound for the spectral radius of a nonnegative tensor. And it is proved that the proposed result improves the bound in (Li and Ng in Numer. Math. 130(2):315-335, 2015).

متن کامل

Bounds for the Z-spectral radius of nonnegative tensors

In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581-1595, 2013), He and Huang (Appl Math Lett 38:110-114, 2014), Li et al. (J Comput Anal Appl 483:182-199, 2...

متن کامل

Computing permanents of complex diagonally dominant matrices and tensors

We prove that for any λ > 1, fixed in advance, the permanent of an n × n complex matrix, where the absolute value of each diagonal entry is at least λ times bigger than the sum of the absolute values of all other entries in the same row, can be approximated within any relative error 0 < ǫ < 1 in quasi-polynomial nO(lnn−ln ǫ) time. We extend this result to multidimensional permanents of tensors ...

متن کامل

Symmetric nonnegative tensors and copositive tensors

Article history: Received 6 December 2012 Accepted 11 March 2013 Available online 8 April 2013 Submitted by R.A. Brualdi AMS classification: 15A18 15A69

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15020439